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Abstract
We propose a spin glass model which has interactions characterized by P

kinds of charges carried by N kinds of particles. When the densities of the
particles are assumed to be Ising spin variables, this model becomes a spin
glass model which has an opposite interactional sign to the Hopfield model
withP memorized patterns. The number of local minimum states and remanent
magnetization are studied to clarify the memory effects of the model. We find
that, as P/N decreases, both quantities tend to the maximum possible values
of the thermodynamic limit.

PACS numbers: 75.50.Lk, 64.60.Cn, 87.10.+e

1. Introduction

In recent years, in the studies of spin glass models, it has been shown that inhomogeneous
interactions among simple degrees of freedom induce interesting collective behaviours among
them. This idea provides fruitful points of view to look at the biological systems which are
expected to be described by the concept of networks.

Among the many properties of biological systems, learning and memory are attractive
subjects which can be studied naturally in terms of spin glass models. Due to the effect of
inhomogeneous interactions, spin glass models have many local minimum states of the energy
function. Since they are fixed points of the dynamics, we expect that any initial configuration
will evolve into one of the local minimum states close to the initial configuration, implying a
memory effect. The properties of these fixed points are controlled by changing interactions
and this corresponds to a kind of learning if it is done according to the effects of external
information.

As a typical infinite-range spin glass model, the Sherrington–Kirkpatrick (SK) model
has been studied intensively by the methods of statistical mechanics [1, 2]. In this model,
interactions between spin variables are random and uncorrelated with each other. Among the
various studies, the study of the number of local minimum states directly shows the complexity
of the energy landscape. For the model with Ising variables, it was shown that the number
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of local minimum states is given by 2Nc with c ∼ 0.3, where N is the system size, i.e. the
number of Ising variables [3]. This number is compared with the number of all configurations
of the system 2N . On the other hand, the memory effect is directly measured by remanent
magnetization, which has been studied intensively to clarify the dynamical properties [4, 5].
From these studies, we know that the SK model has a complex energy landscape and really
works as a memory.

To model biological systems by spin glass models, the statistics of interactions should be
prescribed according to the biological aspects of the problems. In neural network models, spin
variables correspond to states of the neuron and synaptic interactions are usually assumed to
obey the well-known Hebb rule or something similar [6]. By the Hebb rule, interactions become
correlated and we have spin-glass-like models of neural networks which show interesting
properties, including an associative memory [7, 8].

Another interesting suggestion from neural networks is unlearning [9, 10]. It was found
that spin models are modifed nontrivially by unlearning the paramagnetic configurations [11].
When this idea is applied to the SK model, interactions become correlated, resulting in a
nontrivial spin glass model, which is practically similar to the Hopfield model but with an
opposite interactional sign, which may be called the anti-Hopfield model [12].

In the previous paper, we have studied the anti-Hopfield model by the replica method. In
spite of the simplicity, this model has properties quite different from the SK model. In particular,
the spin glass phase transition becomes dynamical for small numbers of ‘memorized’ patterns
P . To identify this dynamical phase transition, we need to find a replica solution which satisfies
the marginality condition [13, 14]. In addition, the structure of the energy function implies a
strong degeneracy of energy for small P . These observations suggest that the anti-Hopfield
model will have attractive properties as a model of memory. However, the interactions are
not familiar in statistical and biological physics. It is desirable to give some direct physical
reasoning for this type of interaction, apart from unlearning.

We have two purposes in this paper. In section 2, we describe a physical meaning for
the anti-Hopfield model. By the arguments in this section, we realize that the parameter P in
the anti-Hopfield model corresponds to the number of kinds of charges if the spin variables
are regarded as the densities of the charged particles. In sections 3 and 4, we evaluate the
memory effects of the model by studying the number of local minimum states and remanent
magnetization. Section 5 is devoted to some discussion.

2. The multi-charge network model

The anti-Hopfield model is defined by reversing the sign of the Hopfield interactions. This
model was motivated by the observation on unlearning in the SK model. In this section,
we suggest another reason for this type of interaction and discuss the features of the energy
function.

Let us imagine that there are many kinds of particles which are characterized by P kinds
of charges. These charges are expressed by ξ

µ

i = ±1, µ = 1, 2, . . . , P for particles of kind i.
There can be 2P kinds of different particles characterized by these charges. Then, assuming
that different charges do not interact, the interaction energy between the kind i and kind j

particles will be a function of the particle coordinates multiplied by
∑

µ ξ
µ

i ξ
µ

j . Although the
statistical mechanics will be studied by specifying the numbers of each kinds of particles, the
neutralization of the system is nontrivial in some situations.

Now let us introduce the simple problem for the system of these particles. We first assume
that only N kinds of particles out of 2P can appear in the system. These kinds of particles
are specified in advance. Then we have quenched charges ξ

µ

i with i = 1, 2, . . . , N . With
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this condition, we consider the problem to find the densities of particles which make the
energy minimum. The relevant cost function will be obtained by averaging the energy over
the coordinates of particles. By the mean-field-like approximation, we will obtain the energy
as a quadratic function of densities of the particles. In this way, denoting their densities by Si ,
the energy function of the system will be expressed by

H = − 1
2

∑
ij

Jij SiSj (1)

where

Jij = − 1

N

∑
µ

ξ
µ

i ξ
µ

j . (2)

This energy function is equal to that of the anti-Hopfield model if the i = j terms are irrelevant.
The above argument naturally suggests calling this model the multi-charge network (MCN)
model.

To define the model completely, we should specify ξ
µ

i and Si . We simply assume that ξµi
are generated randomly, although some specific assignments may give quite different models.
We can further simplify the problem by assuming Si to be binary variables which express the
presence or absence of each kind of particles. In this paper, we restrict ourselves to the Ising
variables Si = ±1 to simplify the following arguments.

We give some remarks on the technical aspects of the model. In the mean field theory, P
should be assumed to be proportional to N . On the other hand, in the framework of charged
particles, P and N are weakly related. We note that different kinds of particles should be
characterized by different sets of charges ξµi . Thus, when ξ

µ

i are generated randomly, N , the
number of kinds of particles in the network, should be much smaller than 2P . This leads to the
inequality P � lnN/ ln 2, or α = P/N � lnN/(N ln 2), which gives the lower bound of α
to define the particle network model with randomly generated ξ

µ

i . This lower bound becomes
zero as N → ∞. Thus, the MCN model with α ∼ 0 is relevant for the description of the
particle networks if N is chosen properly. Note that the antiferromagnet, i.e. P = 1, which
creates only two kinds of particles, does not satisfy the condition for N > 2.

In the earlier paper [12], we have studied the statistical mechanics of the MCN model with
Ising Si by the replica method. What we found for the MCN model is summarized as follows.
There are two regions of α ≡ P/N which show different properties. For large α, the model
is similar to the SK model. This is a direct consequence of the fact that the correlation among
interactions disappears as α → ∞. On the other hand, below α = αc ∼ 1.4, the property
of the spin glass phase transition changes to a dynamical one, which requires a marginality
condition on the one-step replica symmetry breaking ansatz to be identified. This aspect is
very similar to other spin glass models such as the random orthogonal model [13, 14]. For
α < αc, we expect that there are a large number of large local minimum states with moderate
energies and annealing configurations are easily trapped by one of them, implying a dynamical
phase transition

The strong dependence on α of this model is qualitatively understood if we see that the
structures of the energy function are quite different between α > 1 and α < 1. It also gives
some idea on the local minimum states. The energy function can be viewed as a problem-
searching N -component vector S = {Si} which is orthogonal to all ξµ = {ξµi }. This is seen
by writing the energy function in the form

H = 1

2N

∑
µ

( ∑
i

ξ
µ

i Si

)2

− 1

2
P (3)
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which is minimized by the configurations perpendicular to all ξµ. Physically, the requirement∑
i ξ

µ

i Si = 0 for all µ corresponds to the neutralization of all kinds of charges. The solutions
are given by (N − P)-dimensional space for N > P , whereas there is no solution space for
N < P . For discontinuous spin variables, the finite-dimensional solution space for N > P

will imply a strong degeneracy of energies of local minimum states, especially for α ∼ 0.
In the following sections, we report studies on the local minimum states and remanent

properties of the MCN model in order to discuss the memory effect of the model. A parameter
α controls the proximity to the SK model. We are especially interested in the model with small
α, which is located far from the SK model.

3. Number of local minimum states of the MCN model

To study the memory effect of the Ising spin model, we begin with the study of the number of
local minimum states, which are spin configurations stable to a flip of any spin. We follow the
standard method of the saddle point approximation presented first for the SK model [3].

The local minimum states are defined by the conditions

Si
∑
j

Jij Sj > 0 (4)

for all i. The number of local minimum states is given by

G =
∑
{S}

∏
i

∫ ∞

0
δ

(
Si

∑
j

Jij Sj − hi

)
dhi. (5)

The details of the following calculations are presented in the appendix, which also gives
definitions of the saddle point variables A, Ā and B, B̄. After averaging ξ

µ

i , which is denoted
by 〈· · ·〉, we reach the problem to find the extremum:

〈G〉 = Extr {expNg} (6)

with

g = ln 2 − 1

2
α ln{(1 + B)2 − A} + αB − ĀA − B̄B + ln�

(
B̄√
2Ā

)
(7)

where

�(x) =
∫ x

−∞
exp

(
−1

2
t2

)
dt√
2π

. (8)

The SK limit is achieved by replacing Jij by Jij /
√
α in (5) and putting α → ∞, resulting in

terms up to the second order of B in (7). The saddle point value of g is denoted by gm.
The α dependence of gm/ ln 2 is presented in figure 1. As expected, gm is larger than the

SK value 0.198 in the studied region. We found that gm tends to the SK value quite gradually
as α increases, while, as α decreases, gm increases monotonically. In particular, with α smaller
than 0.2, gm increases drastically and tends to the possible maximum value ln 2 = 0.693 as
α → 0. In the appendix we discuss this limit analytically and find

gm ∼ ln 2 − 1

2
α ln

(
4 +

2

α
ln

1

α

)
+

1

2
α (9)

which is also plotted in figure 1. We should note that this result does not mean that all
configurations become local minimum states for α → 0, which is logically impossible. In gm,
there will be some corrections which disappear in the thermodynamic limit.

The result is rather interesting and should be confirmed by some other approaches. In the
next section, we will study the population of local minimum states from different points of
view.
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Figure 1. The α dependence of the number of local minimum states obtained by the saddle point
method. The full curve represents gm/ ln 2 obtained by numerical studies of the saddle point
equations. The broken curve on the left is drawn by using the analytic result in the text, which is
obtained by the approximation for α → 0.

4. Remanent magnetization

The result for the number of local minimum states is very interesting and it is highly desirable
to confirm it by some numerical methods. However, it is not easy to study directly the number
of local minimum states numerically due to the enormous number of them. In the context of
the memory effect, the large number of local minimum states implies a large remanent effect
if local minimum states are not correlated in configuration space. We have no idea about the
correlation among local minimum states, but it is plausible that the remanent effect increases
if the number of local minimum states increases. In addition, the remanent effect is easier to
address numerically than the number of local minimum states. For the SK model, there have
been many studies on remanent magnetization by numerical simulations and the dynamical
mean field method [5]. In this section, we study the remanent magnetization of the MCN
model by the standard simulation method.

Remanent magnetization is defined by the overlap between initial configuration and final
configuration which is obtained by spin dynamics from an initial configuration. To be thorough,
we review the numerical procedure to obtain this quantity.

We first generate a random spin configuration Si(0). This configuration is relaxed to a
local minimum state by asynchronous spin dynamics defined by

Si(t + 1) = sgn

( ∑
j

Jij Sj (t)

)
. (10)

A local minimum is achieved when Si(t0 + 1) = Si(t0). Then, the remanent magnetization m

is obtained by

m = 1

N

∑
i

Si(0)Si(t0). (11)

We perform averages of m over NI initial configurations and NS realizations of ξµi for each α.
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Figure 2. The α dependence of remanent magnetization m obtained numerically for N = 250 with
NI = 100, NS = 100 and N = 1000 with NI = 10, NS = 10. The curves are to guide the eye.

For the SK model, m was found to be about 0.1 [4]. It is known that m shows strong
system-size dependence. The system sizes we have studied are N = 250, 1000, which may
not be large enough to achieve the thermodynamic limit. Here, we restrict ourselves to the α

dependence of m. We have chosen an odd P to avoid Jij = 0 for small α.
In figure 2, averages of m are presented as a function of α for N = 250, 1000. The α

studied are slightly different for different N since we used odd P . The numerical results show
a monotonic increase of m as α decreases: in particular, m tends to 1 as α → 0. The drastic
change below 0.2 is quite consistent with that of gm. We notice that m with N = 1000 are
systematically smaller than the ones with N = 250, implying the system size dependence of
m. Although some systematic studies are needed on this point, our numerical results suggest
that the remanent magnetizations tend to 1 as α → 0, in accordance with the behaviour of gm.

5. Discussion

In this paper, we first discussed a physical reason for the anti-Hopfield model, which suggests
calling this model the MCN model, and then we studied the memory effects of the model.

The physical reasoning of the MCN model is summarized as follows. We introduce the
system which consists of N kinds of particles. Each kind of particles is characterized by P

kinds of charges ξµi = ±1, where i = 1, 2, . . . , N . They are assumed to interact with each
other by these charges. To find the simple nontrivial problem, we restrict ourselves to the
problem of finding the densities of the particles which make the energy minimum. This leads
to the energy function of the MCN model which is a quadratic function of densities of particles
Si . The energy function becomes a minimum by neutralization of all kinds of charges.

To evaluate the memory effects of the Ising MCN model, we have studied the
number of local minimum states and remanent magnetization. These quantities show
consistent α dependence in the parameter region studied. In particular, as α decreases,
these two quantities tend to the possible maximum values of the thermodynamic limit.
This implies that α is a relevant parameter for controlling the complexity of the energy
landscape.
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Let us comment on an interesting problem in the MCN model. In this model, the system
is specified by N kinds of particles. These particles are implicitly assumed to be produced
by the system. Then we may ask what happens if a new kind of particle, which has a set of
charges different from all ξi , gets into the system. The energy function for this situation is
easily obtained by introducing ξ

µ

0 and fixed S0, which represent the charges and the density of
the new particle. The structure of the energy function implies that the charges of new particles
should be neutralized by the system. It will be interesting to study the minimum of the energy
function from this point of view.

The introduction of several charges may look unphysical, but this is a natural way of
introducing randomness characterized by sites instead of bonds. In addition, the introduction
of many charges naturally provides a simple description of the diversity of species in the system.
This leads to the application of the model to systems which consist of many kinds of complex
particles, such as protein molecules in the immune system. It is known that many types of
shape–complementary-shape interactions control the interactions between protein molecules.
Although there will be several points to be clarified, we expect that the system of particles with
many kinds of charges may capture this aspect of biological systems.

Apart from our modelling, the similarity between the nervous system and immune system
has been pointed out, concerning their functions to external stimuli [15, 16]. Both biological
systems respond adequately to external information which is foreign to themselves. They need
to memorize and learn information coming from outside to stabilize themselves. To do this, it
will be convenient to have an enormous number of dynamical fixed points in the configuration
space. Studies of the MCN model will hopefully provide some insight into the functions of
these biological networks.

Appendix

In this appendix, we first review the derivation of saddle point equations for the number of
local minimum states and then discuss the solution in the α → 0 limit.

Introducing integral representations for the delta functions, (5) is expressed as

G =
∑
{S}

∏
i

∫ ∞

0

∫ i∞

−i∞
exp

[
φi

(
Si

∑
j

Jij Sj − hi

)]
dφi dhi

2π i
. (A.1)

In the exponential, summation over i and j gives∑
i

φi

(
Si

∑
j

Jij Sj

)
= −

∑
µ

aµbµ + α
∑
i

φi (A.2)

where aµ = ∑
i ξ

µ

i Si/
√
N and bµ = ∑

i ξ
µ

i φiSi/
√
N . For each µ, we introduce Gaussian

variables xµ and yµ and write

exp (−ab) =
∫ ∫

exp

{
−1

2
(x2 + y2) + x

a − b√
2

+ iy
a + b√

2

}
dx dy

2π
(A.3)

where the index µ are dropped for simplicity. Introducing z = (x + iy)/
√

2 and z̄ =
(x − iy)/

√
2, and after ξµi averages, we obtain

〈exp (−ab)〉 =
∫

exp

{
−zz̄ +

1

2
(Az2 − 2Bzz̄ + z̄2)

}
dx dy

2π
(A.4)

where A = ∑
i φ

2
i /N and B = ∑

i φi/N . After integrating over xµ and yµ, we obtain

〈G〉 = 2N

∫ ∞

0

∫ i∞

−i∞
exp

(
− 1

2
P ln{(1 + B)2 − A} + PB −

∑
i

φihi

) ∏
i

dφi dhi
2π i

.
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Then, by expressing 1 by the delta functions∫
δ

( ∑
i

φ2
i − NA

)
N dA =

∫ ∫
exp

[
Ā

( ∑
i

φ2
i − NA

)]
N dA dĀ

2π i∫
δ

( ∑
i

φi − NB

)
N dB =

∫ ∫
exp

[
B̄

( ∑
i

φi − NB

)]
N dB dB̄

2π i

and replacing φi by iφi , we obtain

g = ln 2 − 1

2
α ln{(1 + B)2 − A} + αB − ĀA − B̄B + ln�

(
B̄√
2Ā

)
(A.5)

where irrelevant constants are omitted.
Let us briefly discuss the solution of the saddle point equations in the α → 0 limit. The

saddle point equations are given by

Ā = 1

2

α

(1 + B)2 − A

B̄ = α − α
1 + B

(1 + B)2 − A

A = −1

2

�′

�

B̄

Ā
√

2Ā

B = 1√
2Ā

�′

�
.

By numerical inspection, we found that −A is positive and become larger than 1/α, while B

remains finite as α → 0. Thus we assume −A becomes infinite as α → 0. Then, by the first
and second equations, Ā ∼ α/(−2A) and B̄ ∼ α, which give B̄/

√
2Ā ∼ √−αA, which also

becomes large. Putting these relations in the third and forth equations, we have B ∼ 1, which
implies

|A| ∼ 2πα exp (α|A|) (A.6)

where we used �′/� ∼ exp (−α|A|/2)/
√

2π . By this equation, we find |A| ∼
2(1/α) ln (1/α) asymptotically. Putting these results in g, we find (9) as α → 0.
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